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SYNOPSIS

The thesis describes the results of research on heat trans-
fer and flow phencmena in a liquid jet, impinging on a flat per-
pendicular surface. In this investigation, the various zones of
flow inside the impinging jet were examined, and the general
character of the flow in each of them was established. Neglecting
gravity and surface tension and using the order of magnitude
analysis 1t was possible to specify the momentum equation for the
viscous flow zone, where the thickness of the flowing layer is
small compared with the distance from the implngement point, and
where the velocity is mainly radial. These equations were solved
by the assumption of the existence of a "similarity solution”
which enabled the statement of two ordinary differential equa-
tions and their solutlions. These solutlons describe the stream
function and the local layer thickness, and they enable the

determination of the local velcelty components.

Uslng assumptions similar to those described above, and
substituting the calculated velccity, it was possible to state
the appropriate energy equation. This equation was solved by
separation of variables, the local temperature being a function
of the surface temperature and distance from the surface. The
heat transfer coeffleclent, Nusselt Number, and the mixing cup

temperature were derived from the above solution.

Apart from the analytical study, an experimental investiga-
tion was initiated with the following scope:

1. qualitative confirmation of the basic assumptions;
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2. qualitiative study of the flow;
3. quantitative confirmation of the theoretical solution.

By the simultaneous performance ¢f the analytile and
experimental studies, checking and improvement of the assumptions
were possible. Comparison of calculated and measured values of
heat transfer showed slight deviations only. A method to calcu-
late the separation dlameter of the jet from the flat surface
was derived as an additional result.

As a result of this research, it 1s possible to calculate
heat transfer between laminar impinging jet and a flat surface
based on the following parameters: flow condltlons in the free
jet, properties of the flowing liquid, and the so0lid surface

temperature.
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SYMBOLS AND ABBREVIATIONS

constant (29)

constant (lia}

constant (52)

constant (53)

constant (49)

constant (29)

speclfic heat

2r

hydraulic diameter = (Cfggﬁ ii;gig?eggniéow) X MF
constant {18)

dimensionless stream function (26)

dimensionless thickness of flowing layer (25)
heat transfer cocefficient

thermal conductivity

funection (51)

funetion (51)

function (51)

Nusselt number

pressure

Prandtl number

dimensionless dilstance from impingement point (114)
heat flux

volumetric flow rate of jJet

surface temperature (46) (only in Chapter 3)
distance from impingement point

Reynolds number

temperature

veloclity in the direction of r

velocity in the directlion of y
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average velocity of the free jet
distance from flat surface

temperature function (50)

Greek Letters

< 9 O < @ I3 95X o > @

thermal diffusion

constant (40, 47)

thickness of flowlng layer

dimensionless distance from flat surface in stagnant flow (2a)
dimensionless distance from flat surface (1ll)

dimensionless temperature (36)

kinematic viscosity

density

stream function in stagnant flow (la)

stream function

Indices and Notations

(
(
(

(

)O values in the diameter do {in Chapter 1Db)

)av average value in the direction of y

)i values 1in the free jet

)mix average values in the liquld after separation
)S values in the dameter of separation

) value on the flat surface
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HEAT TRANSFER BETWEEN LAMINAR LIQUID JET AND A FLAT SURFACE

Micha Wolfshteln

CHAPTER A
FOREWORD

1. General Background

Gaseous or liquid jets find many uses in medern technology, éﬂﬂ
in turbines and jet engines. Indeed, many papers exist which deal
with the conditions of flow in various jets.(see [1l, 2, 2]). It
is worthwhile mentioning that the pressure exerted by a liquid
jet impilnging on a flat surface was measured by Reich [41. He
found also that the velocity after the impact with the flat surface
is almost parallel to the surface.

The work of Glauert [5] merits special attention. He calculated|
analytically the distribution of the veloclty in incompressible,
steady, turbulent and laminar, two-dimensional gas jets having
axial symmetry, which impinge on a flat surface. His work was
checked experimentally by Bakke [6] and Bradshaw and Love [T],
who proved that the description given by him is accurate a suf-
ficlent distance from the impingement point of the turbulent jet.

The problem of the distributioh of the veloeity and pressure in
the impact region is mentioned in the last reference, and is
dealt with in the case of the turbulent gaseous jet.

Because of insufficient knowledge concerning the flow, we
do not have enough data on heat transfer. Included in [8, 9, 10,
11, 12, 13, and 14] are results of various experiments which

measure heat transfer between fturbulent mixing jets and plane
# Translator's note: Numbersl in margin indicate pagination in |
original foreign text.| 1




surfaces. Wolfshtein and Stotter [15] tried to solve the heat
transfer equation analytically,using the equation for the velocity
which was developed by Glauert [5] for the case of an incompressible
gas jet which mixes with its surrounding. The mentioned material
does not provide sufficient information concerning the flow con-—
ditions and heat transfer in the impinging jets, and it 1s impos-
sible to base an engineering design or an accurate sclentific
calculation on the information now available. This situation 1is
in contrast to the many design problems which deal especlally

with heat transfer between impingilng jets and plane surfaces.
Among these problems are the problems of the turbulent jets of

hot burning gases which are produced by missiles and impinge on
the launching pads, turbulent Jets of alr for cooling industrial
plants, laminar jets of oil for cooling engine pistons, and lami-

nar Jets for cooling or heating liquids in chemical plants.

2. Types of Jets

As a basis for an accurate analysis of flow and heat trans-
fer in incompressible impinging Jjets, we suggest the following
classification according to Wolfshtein and Stotter [151:

1) a turbulent jet of a liquid having a viscosity simllar
to that of the surroundings, such as a gas Jjet in the atmosphere

or a water Jjet in water.
2) lJaminar jet with condltions similar to paragraph 1. /5
3) turbulent jet of a liquid having a viscosity different

by an order of magnitude from that of its surroundings, such as

a water Jet in the atmosphere.

4 laminar jet under conditions similar to paragraph 3.



Most of the mentioned references deal with jets which are
included in paragraph 1. Glauert [5], Wolfshteln and Stotter [15]
deal with paragraph 2. Research on cases mentlioned in paragraphs
3 and 4 has not reached the author's attention, except for the
research mentioned in [4], which deals especially with the distri-

bution of pressures at the impingement point.

Considering the character of the problem, the following

division is desired between two zones in any Jjetb.

1) The impingement zone, in which the two components of
the veloeity have the same order of magnitude, and where changes

in the direction of the momentum occur.

2) The parallel flow zone, in which the main component of
the velocity 1s parallel to the surface, but the second component
is much smaller. This zone is characterlzed by a large ratio of
the distance to the impingement polnt and the distance te¢ the
so0lid body.

The mathematical methods which one uses in dealing with
analytical solutions of flow differ considerably in the two
mentioned zones because of the different characterlsties of the
simplifying assumptions which are used in the two zones. One may
expect to have a difference between the two solutions and it will

be necessary to make adjustments.

3. Definition of the Problem

The purpose of the present research is to suggest a method
by which one may calculate heat transfer between a steady -
impinging laminar jet, which does not mix with its surrounding
(having a viscosity much greater than its surrounding) and a plane
surface perpendicular to it. The derived solutions are not



suitable for the impingement polint and its lmmediate surrounding s
but only to a zone whlch is sufficiently remote from the impinge-

ment point. The research is divided into four main parts.
1) analytic examination of the flow;
2) analytic examination of heat transfer;
3) experimental confirmation of the flow solutlonyp
1) experimental confirmation of the heat transfer solution.

An intermediate result which was obtained in the course of
this research but which will not be described here 1s the solu-
tion of the problem of heat transfer between a steady lmpinging
jet which mixes with a surrounding having similar characteristics,
and a plane surface which is perpendicular to it. A paper which
describes the solution was published with the authorization of
the Graduate School [151.

The following research will not deal with the influence of

surface tension or the phenomena under discussion.

CHAPTER B
ANALYTIC SOLUTION OF THE FLOW PROBLEM /6
1. Assumptions and Methods of Solution

in order to solve the Navier~Stokes equation for the case
of the impact of a steady laminar jet with a plane surface, it is

necessary to make the following assumptions:

a) the influence of surface tension and gravity on the flow

in the discussed zohe is negligible;
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b) the thickness of the flowing layer is much smaller than

the distance to the impingement poilnt;

c) the characteristics of the liquid (viscosity, density,

heat conductivity, ete.) do not change consilderably.

From the physical point of view, it is possible to divide

the jet under consideration into four main parts as in Figure 1:

.‘\ ‘ =) . l'.u'\; d ;
// ‘J\"/"’. \\

y
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Figure 1. Impinging jet and division into zones.

a- free jet which moves with a constant velocity perpendicular to
the plane surface; b- potential flow with a free surface on one
side and a boundary layer on the plane surface from the other
side in the zone of impact where the changes 1n direction of
momentum and veloclity occur; c¢- viscous flow with a free surface
on one side and a plane solid surface on the other side and the
velocity approximately parallel to the plane surface. In this
region, the thickness of the flowing layer is small and therefore,
the influence of the viscous forces 1s very great, which resulits
in a conslderable decrease in the velocity; d- viscous flow with
a very low velocity.

As mentioned in the Foreword, the present research deals
only with zone c¢. Assumption a is inappropriate for zone d, and

agsumption b is inappropriate for zcnes a and b.



An order of magnitude analysis of the Navier-Stokes equations
in zone ¢, assuming a steady axially-symmetric flow, and by
neglecting body forces (for a detailed description of this method
of analysis, the reader is referred to the book of Schllechting
[16], pp. 107 - 109), which yields the following results(:

\ z

o oy =7 0y ()
2P _
3;’0’ (2)
) 2 '
> )+ o5 =0 (3)

Since, on top of the free surface (where the liquid is in touch
with the atmosphere), the pressure is constant, we get

———

27

and therefore, in the present zZone, we get

.QP;OX

P=Constant] (4)

At this stage, it is worthwhile to mention that even though
Equation (1) 1s typical to boundary layer phenomena, the flow in
guestion is not a flow of a boundary layer in the usual sense,
because the potentizsl flow which usually exists at a sufficient
distance from the boundary is totally missing here. As a result,
there 1s a drastic reduction in the velocity, and there is a
physical 1imit to the thickness of the layer, which depends on

the exlstance of the continuity equation.



The initial conditions for the differential equatlions are:

For the diameter do, the thickness of the flowing layer 1s

§ and the average radial velocity is an

o) V'

One ecan chose do arbitrarily with the following condition

|
S0 oy (5)

do

Also, for the continuity equation to apply, we have

Q: ﬂ-é—; da UDM.i (6)

2. Mathematical Statement of the Flow Problem

The continulty equation (3) can immediately be integrated

by defining a stream function ¥, and so

L OV
- £ (7
u T 2Y4
__ 4 2¥
tr,-“:'f 5 ‘ {8)

The stream function has to fulfill the condition

Y- Ye)=o0

where § 1s the thickness of the flowing layer which depends only

on the radius. On the other hand, if a similarity solution
exlists, ¥ has to be a unique function of the new variable n, and

it is logical to define this function as follows:

) Ye)= 52 f@)} (9)



where

(ﬁ({)a,{ (10)
From thig/definition yields another condition

J@=o
Let us now define the layer thioknéss by

J_==J: 5 / (12)

where 60 is defined in the previous chapter, and g is a unigue

(11)

function of the radius.

On examining Equation (9), it 1s reasonable to define n as

follows:
‘
2_..- —'}_ = ifo (13)

Now it 18 necessary to determine whether it is possible to find
a transformation which willl fulfill conditions (9), (10), and
(13). Before doing so, let us examine the dimensionless radius

7 | (14)

T T
By inserting Equations (7), (8), (9), (10), (13), and (14) into
Equation (1), and performing all the necessary differentiations,

we obtain the following equation

n :2.@0 j{-;- Jd | (15)
Of -l-! 29+ d4 é}?);—ol. _

where ' denctes differentiation with respect to n, and where

p C— u"w ol”d - l/ UOWJ:
€, ) 3 - 3

(16)




It is clear that Equation (15) can fulfill the unique
dependence of £ on n only if the following exists

0 |
’3‘:’;;? d;// 44)= (1)

where a is a constant. It is easier to deal with the equation

if we define

20 _ p
SR"oﬁ

-]

(18)

It 1s also necessary to define the boundary conditions. One
boundary condition 1s defined in Equation (10). Another boundary
condition is a result of the fact that there 1s no slipping on
the plane surface y = 0. A third boundary condition is connected
with the shear force on the free surface y = §, which is propor-
tional to the second derivative of £f. In this case, it is possible
to assume that this force is zero because of the low viscosity of
the air, relative to liquids under normal conditions. It is _/10
possible now to formulate the problem by the followling equations

L]} ;2 | 1
/-"cﬂ,f =0 (19)

with the boundary conditions

(20a)
z =0 f!ﬂ 0 *
-y f = 1 (20b)
: y
f =0 (2Cc)

J%,(f}?*)=307'7'_ (21)



with the boundary conditions
q =1 _g..w (22)

The velocities u and v are defined by the functions f and g,
since when we insert (9), (13), and (14) into (7) and (8}, we
get

o = (23)
a 39

= U, zaﬂ 3? = | é‘; ? 9’ (24)

ﬁlh

alr

3. Solution of Layer Thickness

Equaticn (21) is immediately integrable:

§4= 09 <o

or, after inserting the boundary condition (22)

§= 04"+ L5

in Figure 2 we show the function g for the value D = 0.726,

(25}

which filts formula 15a 1n appendix A.

In practice, the minlmum will depend on the value of D, or
a, which has not been fixed yet and which depends on the solution
of f. But, in this case, we prefer to choose that value of D
because,|in the author's opinion, it 1is very close to the true
value of D (see Appendix A), and therefore, the behavior of the

10
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n

function g will resemble the curve in Figure 2,

|

For values of D close %o the mentioned value, it is found
that the reduction of the velocity, because of the shear forces,
is so strong that not only is there a radial expansion of the
layer, but the layer thickness increases with the distance from

the impingement point.

. Solution of the Stream Funection

Equation (19) does not have a closed solution. It was
solved by the expansion

(26)

f'-;gﬂ-‘-ﬂd.?-‘”l.zl-‘l"d;

and by inserting (26) into/(19) and using the boundary conditions
(20a) and (20b), one gets

_ﬁ¢=‘ﬂ=’£‘3=ﬂ.,.= .-'--.. ="?’d=/q_.y'#'=d-..;=a\ (27)

(28)

N ! ) . ' .t

| | s
— @ (=3
™G S ey ]

By inserting (20c¢) and the connection (11), which 1s derived
from the definition of the stream function, it is possible to fix
the numerical value of A, and a as follows:

12



A=A 137¢

(29)
Q= VL 74
and the solution is |
f: 143995 " 457307 )4 4 43395071y )

’ -3 L ; -

=2.4230u~ " 4 5 awt/x/o"'z L s ressindsy” (30)

+ 0732045 Z“ -~ S UHT b z"’ . F IR ’z %
5. Analysis of the Solutions | /13

The function f and its derivatives f' and f" are shown in
Figure 3. One sees that f is qulte close to being linearly
dependent on n, and that the boundary condition (28) has a marked
effect on the value of f' only close tc the limit n = 1. Choosing]
a different value for f" (1) will not have a big effect on the
values of f' and f for gsufficlently small values of n. It is
possible to use this analysis for various values of f" (1) and

obtain solutions which will converge for decreasing values of n.

We may mention that one possible solution was suggested by
Glauert [5], for the case where the viscosity and density of the
liquid equals that of 1ts surroundings.

Assumption (28) has other results. It fixes the value of
the coefficient appearing in the formula for g (25) when the

nunmerical | value of g depends only on the average velocity anv’

and the layer thickness ﬁo within the diameter do.

It is worthwhile to mention again that Equations (25) and
(30) describe the flow field only when §&6/d =+ 0, and when é&/d
approaches sufficiently large values (close to the impingement
point), the present solution loses i1fs accuracy and 1s not useful

any more.

13
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Inserting the solution (25), in order to solve §/d, yields

Lo 84 _ 24 4+ 3, 4-0 4 (31)
o 4rdy T 3R, 24 o 9*

It is clear, therefore, that the existance of the solution depends
first of all on Reo being sufficiently large. For sufficlently

large values of g, the solution is inadequate.

These considerations make 1t possible to define {(depending
on the accuracy required) the boundary of zone c¢ as described in

Chapter B-1, where this solution exists.

CHAPTER ¢
ANALYTICAL SOLUTION OF THE HEAT TRANSFER PROBLEM

1. Statement of the Energy Equation

The solution of the energy equation in zone ¢ relles on
the above soluticn of the momentum equation in the same zone,
and therefore all the general assumptions described in Chapter B-21

are relevant here.

Using these assumptions, and using order of magnitude analysis,
led us 1n Chapter B-1/to formulate Equations (1) and (2) as residues
of the momentum equations for axially symmetric flow. In a
similar way, 1t 1s possible to develop the following equation
from the general energy equation for axial symmetry flow:

ot 26, oM
u;;*-_trgyf:x '5‘31 (32)
With the boundary condition
= ‘f-‘-“ f}
Yy=0 t= £ @ (33b)
3-'3;- ar;-: o : (33c)

15



The boundary conditions (33a) and (33b) are general and it
is possible to fi%t them to different cases, The boundary condi-
tion (33c¢) is less general and has the physical meaning that the
amount of heat transferred by radiation and free convection from
the flowing liquld to its surrounding 1s negligible relative to
the total amount of heat transferred from the solid surface to
the liquid. It is clear that this condition exists only at
sufficiently low temperatures and when the Jet velocity and
thermal diffusivity (a) are large.

It is necessary to insert in Equation (32} and boundary
condition (33) the values u and v according to (18}, (23), (24),
and (25), and perform a transformation from a system with
coordinates y, r to a system with coordinates n, qQ, by using
Equations (11) and (14). As a result, the energy equation is

given by the following expression:

Xt_tp p dpld 2 _ "-”’f

and the boundary conditions (33a) and (33b) become

§=t b (352)
7= 0 t=1¢ () (350)

The boundary condition (33¢) states that the surface of the liguid

(34)

is an adiabatic plane. But in the g-n plane, the velocity does
not have a component in the n direction, but only in the ¢

direction, and therefore we have

— = . 2:4’ (35¢)

while, from heat balance considerations (Figure 4), one gets for

nonadiabatic conditions

16
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Figure 4. Heat transfer near a free surface.

bt § V2RS4
It is desirable to insert a dimensionless expression for the
ftemperature
t-t; |
= == 6
to""t{ (36)

and because of the homogeneity of Equation (34), we get the final

equation with the boundary condition

99 Y __3_ 20
7 &, Pr (37)

7 AT
7,-.-1' | 9= & Qr)) (38a)
1= ¢ ; ‘9(?') (38b)
=4 5 =0 | 80

17




2. The Separation of the Variables and Its Physical Significance /17

In this chapter we shall try to perform a separation of
variables in Equation (37), and find the boundary condition (38)
for making this separation possible, To do so, it is necessary
to assume that 8 i1s a product of a functlon of n times a function

of q

0= Y@ - (Q@/)) (39)

By inserting (39) into (37) and performing separation of variables

we get the equation

gl ‘ .
? 'R"r%ah (40)
£y A T ¥ Q

and the boundary conditions will be

=4 &= YA (41a)

=0 6= YO & (41b)
,Lg-_,{ (Q 9Y..

11, (lllc)

and immediately it is clear that relations (Zla) and (41b) are
a necessary condition for separation of variables.

Assuming that these conditions exist, the full formulation
of the problem is as follows:

T.": ,\f’y, (42)
| (43a)

y':o ' (43b)

18



Q=
) ﬂf.ﬂy7t (44)
¥ 4, & ﬂr .

3. Derivation of the Surface Temperature

By inserting g from (25) and D from (18) into Egquation (44),

a- .. @L,, e

and by inserting the boundary condition (U4l) together with (22),

we get the sclutilon

(45)

we get
{f /e

5)=28)= (397

(46)

We find the ratio

}\
[
1C0

4 6@
467

and if A, which is calculated according to (47), is constant (and

A= Py (47)

does not change with q), it is possible to perform separation of

variables by using Equation (25) and the following binomlal
results from (46) |

9(?) @?*J‘D)ah (D?)aﬁ["';% %‘:}%‘""----J
where D.?s . D/

One sees immediately that, 1f the value of A and Pr fulfill the

condition
aP-r ﬂ )

19



then when g is sufficiently large, 8 is approximated by

4_ % )
6@)=0" ¢
and so the shape of B depends on the parameter B.

4, Derivation of the Layer Temperature

The temperature distribution in the flowing layer is described
by the function Y which is given by (42) and (43). In the case
of a large Prandtl number, 1t is possible to assume that most
of the temperature gradient is close to the wall, and 1t 1is
possible to retain only the first part of f' and assume

} .
f=228p4-....,
Then we get the equation

(48)

Y'=hry

with the boundary condition (43), where X 1is given by (47), and

A=228A | (49)

This equaticn can be solved by the expansion

@ 5" Ao .6?4 3
= —_— (50)
14 ,,‘f,, Zm/ kK el Z]Z >?

™~
=
O

where

|

Kt=2.58..... 6Gr-0
L (W=3¢9..... . 3n
ﬂ@).-—.*#.?../a.--,, (5_')74-.{)

K@) = L @)= AO)= 4

(51)
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and by inserting the boundary condition (42), onelgets

Q.= A X (52)
oo }Q‘L
- S k) Z )
dl‘— o n- (53)
Z A

nze LD M0

The wvalues %% as function of A are shown in Pigure 5. The

functlon Y itself is drawn in Figure 6 for various values of A,
and it is clear that if A is suffilciently large, the approximation
of a linear distribution of velocities is a good one, since the
temperature gradient clese Lo the wall is large.

Explicitly, one obtains the following formula;

.._. .o .-‘ y, C), ‘3' / 4. 6
Y= 4+ au (2"'5" "Fdf _,.(2'3'51‘ 4_3_?‘6_?92 ’ (54)

By inserting (39), (46), and (54), the final result 1s

9'-}____;‘_‘__ —@?)ahp*“JZ“--"] (55)

5. Derivation of the Heat Flux and the Heat Transfer Coefficients

By using Equations (13) and (55), it is possible to calculate /22
the local heat flux

9,= .. 3/” Iméa,)f (-if;%ﬁz% ~ (56)
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and from Formula (56), it is possible to calculate the local
film coefficient

},-— - (\_Kéﬂi_ Lé_‘hr;i (57)

‘11\| I

and also the local Nusselt number

Ne= “; ( )i&_{ﬂ% (58)

N e

and the mixing temperature

L ,fzzﬁruﬁdg-
mix fﬂr"’"”’r (59)

To achieve this goal, one has to calculate the dimensionless

_m’z_ @ mo 1y
jf*?ﬂae | 'd?

which can be reduced to

Lol 2-capg @

By means of (60), one can calculate the mixing temperature

expression

Fomie =1i+ Onin (ZZ '2‘:‘)) (61)

Because of the practical importance of Equation (61}, it is
useful to insert in it Equations (46) and (60) and obtain

tnia=ti= () (F- 1)

where (—al) is defined by (51) and X by (47).

(62)
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It is important to remember that the solution exists only /23
under the conditions described in Chapter C-2/and formulated by
the boundary condition (41).

Although one is not always sure that these conditions exist,
usually the influence of the initial condition is limited to a
certaln distance, and therefore, for a sufficiently large q, the
solution may even describe a situatlion where the boundary con-
ditions do not fulfill (41).

CHAPTER D
THE EXPERIMENTAL APPARATUS

1. The Purpose of the Experiments /24

At the same time that the theoretical work of the research
was under way, an experiment was performed to check qualitatively
and quantitatively the nature of the physical phenomena 1n order
to justify the theoretical assumptions and their regions of

validity.

Varlous phenomena were checked in this part of the research,
which relate to the problems of flow and heat transfer. Also,
the practical physical phenomena were analyzed, and a quantitative
comparison was performed between the calculated and experimental

results.

2. Description of the Apparatus

The experimental work was performed in a special apparatus
built for that purpose. The apparatus is shown in detail in
Figures 7 and 8 and in photos 1 and 2.
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3. Description of the Experiments

The experiments performed included the impingement of a
viscous liquid jet on heated and unheated surfaces, and a quali-
tative and quantitative check of the thermal field and the flow.

A solution of glycerin and water was chosen, slnce it was easlly
possible to create low and high concentrations and since this solu-

tion has a relatively high viscosity.
The experiments were divided into two series as follows:

a) checking the shape of the flow. In the first series
of measurements, the general shape of the flow was checked, To
do so, the thermocouple plate 5 was Interchanged with a trans-
parent plate. By splashing the }et from below on the transparent
plate, it was possible to observe the general shape of the flow.
By attaching the surplus line (14) to the container 1 high above
the liquid surface, small bubbles of air were introduced 1nto the
liguid, and it was possible to watch them accompanying the flow
through the transparent plate. In this way, it was posslble to
follow the flow lines in the layer, and get a gualitative idea
about the velocity in the layer.

b) checking the temperature field: in this series of
measurementa, all the different parts of the apparatus were assem-
bled, and the effect of the jet impingement from below on the
temperature field of the thermocouple plate which was heated from

above, was checked.

For that purpose, the quantity of liquid, flowing through
the jet, was measured by a graduated cylinder and stop watch
(using the set of valves 17), the specifiec gravity of the liquid
was measured, and the temperature at the Jet orifice and where it
leaves the apparatus was measured. The temperature was also
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measured by means of the potentiometer 11 from both sides of the
thermocouple plate, and the separation diameter of the jet from

the board was noted.

CHAPTER E
RESULTS OF THE EXPERIMENTS-FLOW

~
o

1. Qualitative Description of the Flow

The first purpose of the experiments was to create a laminar
flow, and fto check the characteristics of this flow relative to
the flow descrlbed in Chapter B-1. The experiments described in
paragraph a of Chapter D-3| served this purpose. Photographs were
taken of the flow through a transparent plate (Photos 4, 5, 6, 7,
and 8), where one can identify clearly the flow lines. The
various gzones which are described in (hapter B-1/ are clearly seen

In these pictures.

The central zone (fits zones a and b).

Zone ¢ - where a radial flow exists on top of the sclid
surface, and where the radlal component of the velccity u is
much greater than the perpendicular component of the velocity v.
In this zone, there is not a marked effect of the surface tension
and gravitational forces.

In gone d the velocity is already very small, since most
of the momentum is transferred into heat and therefore gravita-
tional and surface tensilon forces are the main acting forces.
Egquilibrium between these two forces determines the diameter of

separation of the liquid from the plane surface.

It is possible to identify two forms of separation: a) the
separation of the liquid as a continuous film (FPhoto 4) having a
conlc envelope, with a wide base resting on the séparation diameter
on top of the plane surface, and a narrow base on top of the holder
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of the orifice; and b) the separation of the liquid at some points
on the separation dismeter (Photos 5, 6, 7, 8), where in each
such point a vertical jet is created pointing downward.

According to the observations, the number of separation
points 1s fixed so that the distance between them is always
constant (balance between surface tension and gravity),

Photo 4. Rei = 1612; d, = 0.6 cm. ¥

24 Determination of the Separation Dlameter

As a result of the measurements performed, it was found that
the thickness of the flowing layer at the separation polnt is
fixed and does not depend on the flow parameters. It is impor-
tant to note that the measurements were performed at almost
constant values of density and surface tension (of the flowing
liquid), and therefore, this behavior is anticipated, since the
separation oceurs only after the "decay" of the velocity. This
phencmena enables one to calculate the diameter of separation.

Photo 5. Rey = 1127; d, = 0.6 cm.®
Calculation of the dependence of the separation diameter on
the surface tension and specific gravity is outside the scope of

this research, and will not be dealt with.

In the following, we shall calculate the layer thickness at
the separation point by means of Equations (16), (18), (25);:

. /"'D . £ 2
£=g5£_=f,[o‘g‘*-%— %3—-“1‘?% 4 (63)

ﬁ}i

* Translator's note: Photos not supplied|,
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Photo 6. Re; = 930; d; = 0.6 cm.¥
TABLE OF RESULTS

Experiment No. ry; cm Rei qg g CMm

| 0,095 || 1448 | | 4.0 0.184
14 0,1095 798 4,31 0.207
16 0.051 . 546 5.15 0.156
17 0.1095 | 1633 4.94 0.214
21 0.1095 | 1062 4.41 0.197
24 0,271 462 2,28 0.172
25 0.271 685 2,66 0.205
26 0.271 1132 2.82 0.195

The resulting average valu

Cll.

Photo 7.

Photo 8.

The temperature difference tm.

formulae|

1
I

5635 d;

Re,
i i

il
i

Rei 3753 di

RESULTS OF EXPERIMENTS — HEAT TRANSFER

e

0.1 cm.¥

0.1 cm.*l

CHAPTER F

1X

A= 4. 770 0y D95

b4, 8,

* Translator's note: Photos not supplied.|

of the separation diameter is 0.191

- ti is calculated by the

(h7)
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A= 2 28X | (49)

according to/Figure 4,

L J@)} (53)

- dd) (" _) 62
The results are complled in the accompanWing table. The
large difference between the measured and calculated values of

tmix - ti are explained by the fact that the difference was not

directly measured but rather calculated as a difference between
two measurements. Since the voltage produced by the thermo-—

couples, which is a measure of the value tmix - ti, i1s between

0.01 and 0.04 millivolts, the accuracy could not be improved.

It is worthwhile noting that the average of the error is

( 'Z‘)?e/u-_ 5‘?%

(iﬂw" ) YV w

Another interesting result is the distribution of the
isotherms in the thermocouple plate (Pigure 11), for experiment
number 26. These lines were calculated by relaxing the equation

of heat transfer to an axially symmetric body

A ) ——-—-0 (64)
~ 91

where the boundary conditions for this equation are inserted from

the experimental measurements.
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It is obvious that the heat transfer takes place via forced
convection to the jet, while the free convection in a diameter
greater than the separation diameter does not play any role in

thls phenomenon.

CHAPTER G
CONCLUSION

1. Summary

After checking the flow conditions in a laminar Jet impinging /38
perpendicularly on a flat surface, it became clear that it 1is
possible to divide the Jjet into zones having different flow
behavior. It was found out that the dominant zone which contri-
butes the most to heat transfer is the zone where the main com-
ponent of the velocity is parallel to the flat surface. In this
zone one may neglect some parts from the momentum equation, and
get a solution to the energy equation (when some of the velocity
values and the thilckness of the flowing layer in a certain diameter
in this =zone are known). The solution indicates that the flowilng
layer thickness reaches 1ts minimum, and then grows parabolically
as function of the dimensionless diameter q. The veloclity profile
is an almost linear functlion of the dimensionless thickness n.

The thickness of the flowing layer at the separation point was
calculated using the develecoped formulas, and it was checked for
all the cases that its value is a fixed number, i.e., 0.191 cm,

as one may anticipate 1n light of the fact that the density and
surface tension are almost constant 1n these experiments. By
inserting the solution of the velocity into the energy equation,
we calculated the temperature and heat transfer coefflcients, as

a function of the flowing liguid characteristics, the jet condi-
tions and the surface temperature. The average difference between
the theoretical c¢alculatlions and the experimental results is about
6%, and therefore it seems reasonable to suggest that this method
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TABLE OF RESULTS

HEAT TRANSFER

OC ¢ % cm
0.208 _o.-33-2' | 0.0475 f eo.lz 26.4 3.9 | 1.795 | 14.7| 4.49| 106 | 1848 | o.1095 | 13
1.540 _0.565' 0u0500 | 56,1 26.6! 6.1 1657 | 135 R 198 | 0.1095 | 14
0.869 1.057 _ 0.659, 45.1] 19.8] 11.3 | 1.584 19.4 5.151 111 546: 6.051 16
0372 | 0380 | 0052 | 53.8] 23.6] 3.5 2.085 | 17.9| 4.94| 81 1633 6.1095 17
1.118 | 0,628 | 0,061 - 43.2] 18.9] 5.9 | 1,145 14.2| 4.41] 79 | 1062 | 0.1095 | 2t
0.645 | 0813 | 0.072 | 34.0| 14.9] 8.9 | 1.269 | 39| 28] | 462 | o2yt | 2
0.421 | o.468 | 0.060 | 44.2]| 19.4| 5.4 | 1.426 5.2 2.66| 8 685I 0.271 >
0.298 | 0.275 | 0.052 | 53.2| 25.3| 3.3 | 1.607 s.9| 2.82] 73| 1132 _ 0.271' 26




of calculation developed in this work is appropriate for calcu-
lating heat transfer between an impinging Jet and a flat surface.

2. Recommendations on Further Research

Not all the subjects mentioned in this research were explored

and 1t 1s necessary to continue as follows:

Experimental subjects:
measurements should be taken of the flowing layer thickness;
accurate measurements should be taken of the difference
between the temperature of the incoming flow and at the mixing cup.

Theoretical subjects:

the solution of the stream in the impact zone;

the solution for the case of liquids having characteristics
which are functions of temperature;

it 1is also desirable to continue the research of temporarily|
unstable jets,nof jet impingement on surfaces which are not per-
rpendicular to the jet, and on simultanecus impingement of several

jets.
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APPENDIX A
CALCULATION OF THE INITIAL CONDITIONS AT DIAMETER do

The theoretical solution te the flow field described in this
work 1s valid only for distances sufficiently far from the
implngement polnt, when the thickness of the flowing layer is
greater than this distance. In order to make numerical calcula-
tions, 1t was necessary to estimate the average velocity and the
thickness of the layer at diameter d . In order to do so, we
assumed the existence of a velocity field as described in Figure
A-1, where the velocity field at a diameter smaller than do is
the potential velocity field with a viscous boundary layer. At
dlameters greater than do, it changes into a viscous | velocity
field as deseribed 1n Chapter B of this paper. The mentioned
potential fleld 1s special in the sense that on the free surface
of the 1ligquld (which constitutes a streamline), the pressure is
constant. An exact solution to such a velocity field has not
been found yetJ and therefore, we tried to use the solution to
8 stagnant flow which does not glve a constant pressure along an
external streamline. The mentioned solution was found by Frissling
[17], and quoted by Schlichting [16]. This solution deals with
a flow which impinges on a plane perpendicular surface, which
disperses on it radially, and it describes accurately only that
portion of the flow which is close to the Jjet center. In the
intermediate zone, which is between the zone where a solution of
the above problem exists, and the zone where the solution is
given by thils paper, one has an unknown flow field, Anyway,
from Figure Z2A one may see a marked resemblance between the
form of ¢' which desceribes the radial velocity of the suggested
solution, and between the form of f' which deseribes the radial
veloelty of the solution described in this paper. Therefore, we
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assumed the exlstance of a radlal veloeity in the intermedlate

zone.

The solution for the stagnant flow is

U=ar 45'8)}

srofE

But in a flow as described here,

where

g o O
3%

253
and from Figure 2-A, one can see that by chosing

_s‘f?._':zzl)

vy
46 . fo
0.9922 " f4624

and the following two relations are established:

=312 - g1

where

one obtains

b o ) =ari it B12)]

(1a)

(2a)

(23)

(11)

(3a)

(l4a)

(5a)

(6a)

4

~
4=
na
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which can be reduced by using (93-a) and (l4-a) to

fo= )‘%"-—f (7a)

0.9u22 27,
= e 0
Yoo = Tim 7T (8a)
Since the veloclty of the surface of the liquid inside the
diameter do has a potential, one has
Q@ |
)=A62 U"w/"\:-[/":ﬁ-_;z (9a)

and the continuity equation is satisfiled

Q= 7md Sy Uy, | (10a)

A simultaneous solution of Eguations (7a), (8a), (%9a), and (10a)
ylelds the following results

Q
Uow.-—: O 7'5’5'—3-;-;/ (11a)
To /s
—=0 Re.
” .;63 o / (128)
[, = /424
T R (132)
a= 238 Vv
- &"ls o1 (1la)
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Equations (l2a) and (13a) are described in Figure 3-4.
Inserting Equations (lla), (12a), and (13a) in Equation {(25)
yields the accurate value of g

- 9. 279{ (15a)

4= 0?26? [

It is important to note that g does not depend on the
Reynolds number but only on q, but g itselfl depends on the
Reynolds number, according to the formula

T (16a)
3, C’b& Rhfh v;

The function g is described in Figure 2.

by
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